Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Immunol ; 14: 1242242, 2023.
Article in English | MEDLINE | ID: mdl-38022505

ABSTRACT

The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Viruses , Humans , Inflammatory Bowel Diseases/microbiology , Crohn Disease/microbiology , Colitis, Ulcerative/microbiology
2.
Curr Microbiol ; 80(11): 363, 2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37807005

ABSTRACT

Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with several inflammatory conditions, including inflammatory bowel diseases (IBDs), and found to have an impact on gut microbiota. In fact, some randomized controlled studies suggest benefits to IBD patients, but others do not. Our aim was to review recent evidence on the effects of omega-3 on IBD and establish the contribution of the gut microbiome. Omega-3 mediate anti-inflammatory effects in IBD through various mechanisms, including suppression of NLR family pyrin domain-containing 3 (NLRP3) inflammasome, Toll-like receptor-4 (TLR4), and nucleotide-binding oligomerization domain 2 (NOD2) signaling; this results in the repression of the nuclear factor-kappa B (Nf-kB) pathway and the secretion of pro-inflammatory cytokines. Omega-3 can also affect gut microbiota and revert the bacterial community to patterns associated with healthy status by increasing short-chain fatty acid (SCFA)-producing bacteria and enhancing the mucosal gut barrier, thus promoting homeostasis. The combination of these immunoregulatory effects and anti-inflammation properties with the promotion of a balanced gut microbiome environment could suggest that omega-3 might benefit IBD patients. Considering the microbiota of IBD patients while using omega-3 might predict and improve omega-3 effectiveness. Combining omega-3 with bacteria-altering therapy, such as probiotics and fecal microbiota transplantation, may further enhance its efficacy; however, further studies are required to elucidate mechanisms and potential preventive or treatment roles of omega-3 in IBD.


Subject(s)
Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Bacteria/genetics , Fecal Microbiota Transplantation
3.
Gastroenterology ; 164(2): 228-240, 2023 02.
Article in English | MEDLINE | ID: mdl-36183751

ABSTRACT

BACKGROUND & AIMS: Inflammatory bowel diseases (IBD) are affected by dietary factors, including nondigestible carbohydrates (fibers), which are fermented by colonic microbes. Fibers are overall beneficial, but not all fibers are alike, and some patients with IBD report intolerance to fiber consumption. Given reproducible evidence of reduced fiber-fermenting microbes in patients with IBD, we hypothesized that fibers remain intact in select patients with reduced fiber-fermenting microbes and can then bind host cell receptors, subsequently promoting gut inflammation. METHODS: Colonic biopsies cultured ex vivo and cell lines in vitro were incubated with oligofructose (5 g/L), or fermentation supernatants (24-hour anaerobic fermentation) and immune responses (cytokine secretion [enzyme-linked immunosorbent assay/meso scale discovery] and expression [quantitative polymerase chain reaction]) were assessed. Influence of microbiota in mediating host response was examined and taxonomic classification of microbiota was conducted with Kraken2 and metabolic profiling by HUMAnN2, using R software. RESULTS: Unfermented dietary ß-fructan fibers induced proinflammatory cytokines in a subset of IBD intestinal biopsies cultured ex vivo, and immune cells (including peripheral blood mononuclear cells). Results were validated in an adult IBD randomized controlled trial examining ß-fructan supplementation. The proinflammatory response to intact ß-fructan required activation of the NLRP3 and TLR2 pathways. Fermentation of ß-fructans by human gut whole microbiota cultures reduced the proinflammatory response, but only when microbes were collected from patients without IBD or patients with inactive IBD. Fiber-induced immune responses correlated with microbe functions, luminal metabolites, and dietary fiber avoidance. CONCLUSION: Although fibers are typically beneficial in individuals with normal microbial fermentative potential, some dietary fibers have detrimental effects in select patients with active IBD who lack fermentative microbe activities. The study is publicly accessible at the U.S. National Institutes of Health database (clinicaltrials.gov identification number NCT02865707).


Subject(s)
Fructans , Inflammatory Bowel Diseases , Adult , Humans , Leukocytes, Mononuclear , Intestines , Dietary Fiber , Inflammation
4.
Microorganisms ; 10(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35208783

ABSTRACT

Non-O157 Shiga toxin-producing E. coli (STEC) can cause outbreaks that have great economic and health impact. Since the implementation of STEC screening in Alberta in 2018, it is also essential to have a molecular serotyping method with faster turnaround time for cluster identification and surveillance purposes. This study sought to perform molecular serotyping of the top six non-O157 (O26, O45, O103, O111, O121 and O145) STEC serotypes directly from stools and enrichment broths compared to conventional methods on isolates. Multiplex, serotyping qPCR assays were used to determine sensitivity and specificity of the top six non-O157 STEC serotypes. Sensitivity and specificity were assessed for both singleplex and multiplex qPCR assays for comparison of the top six serotypes. Blinded stool specimens (n = 116) or broth samples (n = 482) submitted from frontline microbiology laboratories for STEC investigation were analyzed by qPCR. Both singleplex and multiplex assays were comparable, and we observed 100% specificity with a limit of detection of 100 colony-forming units per mL. Direct molecular serotyping from stool specimens mostly correlated (88%) with conventional serotyping of the cultured isolate. In cases of discordant serotypes, the top six non-O157 STEC mixed infections were identified and confirmed by culture and conventional serotyping. Detection of non-O157 STEC can be done directly from stool specimens using multiplex PCR assays with the ability to identify mixed infections, which would otherwise remain undetected by conventional serotyping of a single colony. This method can be easily implemented into a frontline diagnostic laboratory to enhance surveillance of non-O157 STEC, as more frontline microbiology laboratories move to culture independent assays.

5.
Front Microbiol ; 13: 829378, 2022.
Article in English | MEDLINE | ID: mdl-35185850

ABSTRACT

Shotgun metagenomics studies have improved our understanding of microbial population dynamics and have revealed significant contributions of microbes to gut homeostasis. They also allow in silico inference of the metagenome. While they link the microbiome with metabolic abnormalities associated with disease phenotypes, they do not capture microbial gene expression patterns that occur in response to the multitude of stimuli that constantly ambush the gut environment. Metatranscriptomics closes that gap, but its implementation is more expensive and tedious. We assessed the metabolic perturbations associated with gut inflammation using shotgun metagenomics and metatranscriptomics. Shotgun metagenomics detected changes in abundance of bacterial taxa known to be SCFA producers, which favors gut homeostasis. Bacteria in the phylum Firmicutes were found at decreased abundance, while those in phyla Bacteroidetes and Proteobacteria were found at increased abundance. Surprisingly, inferring the coding capacity of the microbiome from shotgun metagenomics data did not result in any statistically significant difference, suggesting functional redundancy in the microbiome or poor resolution of shotgun metagenomics data to profile bacterial pathways, especially when sequencing is not very deep. Obviously, the ability of metatranscriptomics libraries to detect transcripts expressed at basal (or simply low) levels is also dependent on sequencing depth. Nevertheless, metatranscriptomics informed about contrasting roles of bacteria during inflammation. Functions involved in nutrient transport, immune suppression and regulation of tissue damage were dramatically upregulated, perhaps contributed by homeostasis-promoting bacteria. Functions ostensibly increasing bacteria pathogenesis were also found upregulated, perhaps as a consequence of increased abundance of Proteobacteria. Bacterial protein synthesis appeared downregulated. In summary, shotgun metagenomics was useful to profile bacterial population composition and taxa relative abundance, but did not inform about differential gene content associated with inflammation. Metatranscriptomics was more robust for capturing bacterial metabolism in real time. Although both approaches are complementary, it is often not possible to apply them in parallel. We hope our data will help researchers to decide which approach is more appropriate for the study of different aspects of the microbiome.

6.
Cancers (Basel) ; 13(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673140

ABSTRACT

Many studies performed to date have implicated select microbes and dietary factors in a variety of cancers, yet the complexity of both these diseases and the relationship between these factors has limited the ability to translate findings into therapies and preventative guidelines. Here we begin by discussing recently published studies relating to dietary factors, such as vitamins and chemical compounds used as ingredients, and their contribution to cancer development. We further review recent studies, which display evidence of the microbial-diet interaction in the context of cancer. The field continues to advance our understanding of the development of select cancers and how dietary factors are related to the development, prevention, and treatment of these cancers. Finally, we highlight the science available in the discussion of common misconceptions with regards to cancer and diet. We conclude this review with thoughts on where we believe future research should focus in order to provide the greatest impact towards human health and preventative medicine.

7.
Microorganisms ; 9(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673617

ABSTRACT

Acute gastroenteritis caused by Shiga toxin-producing Escherichia coli (STEC) affects more than 4 million individuals in Canada. Diagnostic laboratories are shifting towards culture-independent diagnostic testing; however, recovery of STEC remains an important aspect of surveillance programs. The objective of this study was to compare common broth media used for the enrichment of STEC. Clinical isolates including O157:H7 as well as non-O157 serotypes were cultured in tryptic soy (TSB), MacConkey (Mac), and Gram-negative (GN) broths and growth was compared using culture on sheep's blood agar and real-time PCR (qPCR). In addition, a selection of the same isolates was spiked into negative stool and enriched in the same three broths, which were then evaluated using culture on CHROMagarTM STEC agar and qPCR. TSB was found to provide the optimal enrichment for growth of isolates with and without stool. The results from this study suggest that diagnostic laboratories may benefit from enriching STEC samples in TSB as a first line enrichment instead of GN or Mac.

8.
Microorganisms ; 8(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207846

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) are associated with acute gastroenteritis worldwide, which induces a high economic burden on both healthcare and individuals. Culture-independent diagnostic tests (CIDT) in frontline microbiology laboratories have been implemented in Alberta since 2019. The objectives of this study were to determine the association between gene detection and culture positivity over time using STEC microbiological clearance samples and also to establish the frequency of specimen submission. Both stx genes' amplification by real-time PCR was performed with DNA extracted from stool samples using the easyMAG system. Stools were inoculated onto chromogenic agar for culture. An association between gene detection and culture positivity was found to be independent of which stx gene was present. CIDT can provide rapid reporting with less hands-on time and technical expertise. However, culture is still important for surveillance and early cluster detection. In addition, stool submissions could be reduced from daily to every 3-5 days until a sample is negative by culture.

9.
Front Immunol ; 10: 2296, 2019.
Article in English | MEDLINE | ID: mdl-31632394

ABSTRACT

Altered microbiota has been associated with a number of diseases, including inflammatory bowel diseases, diabetes, and cancer. This dysregulation is thought to relate the host inflammatory response to enteric pathogens. Macrophages play a key role in host response to microbes and are involved in bacterial killing and clearance. This process is partially mediated through the potassium efflux-dependent, cytosolic, PYCARD-containing inflammasome protein complex. Surprisingly, we discovered an alternative mechanism for bacterial killing, independent of the NLRP3 inflammasome/PYCARD. Using the NLRP3 inflammasome-deficient Raw 264.7 and PYCARD-deficient J77 macrophages, which both lack PYCARD, we found that the potassium efflux activator nigericin enhances bacterial killing. Macrophage response to nigericin was examined by RT gene profiling and subsequent qPCR, which demonstrated altered expression of a series of genes involved in the IL-18 bacterial killing pathway. Based on our results we propose a model of bacterial killing, unrelated to NLRP3 inflammasome activation in macrophage cells. Improving understanding of the molecular pathways driving bacterial clearance within macrophage cells will aid in the development of novel immune-targeted therapeutics in a number of diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/immunology , Cytotoxicity, Immunologic/drug effects , Macrophages/drug effects , Macrophages/physiology , Nigericin/pharmacology , Animals , Bacteria/growth & development , Host-Pathogen Interactions , Immunity, Innate , Inflammasomes/metabolism , Macrophages/microbiology , Mice , Microbial Viability/immunology , Models, Biological , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phagocytosis/drug effects , Phagocytosis/immunology , RAW 264.7 Cells , Signal Transduction/drug effects
10.
Microbiome ; 7(1): 1, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30606251

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBD) are a group of complex and multifactorial disorders with unknown etiology. Chronic intestinal inflammation develops against resident intestinal bacteria in genetically susceptible hosts. We hypothesized that host intestinal immunoglobulin (Ig) G can be used to identify bacteria involved in IBD pathogenesis. RESULTS: IgG-bound and -unbound microorganisms were collected from 32 pediatric terminal ileum aspirate washes during colonoscopy [non-IBD (n = 10), Crohn disease (n = 15), and ulcerative colitis (n = 7)], and composition was assessed using the Illumina MiSeq platform. In vitro analysis of invasive capacity was evaluated by fluorescence in situ hybridization and gentamicin invasion assay; immune activation was measured by qPCR. Despite considerable inter-individual variations, IgG binding favored specific and unique mucosa-associated species in pediatric IBD patients. Burkholderia cepacia, Flavonifractor plautii, and Rumminococcus sp. demonstrated increased IgG binding, while Pseudomonas ST29 demonstrated reduced IgG binding, in IBD. In vitro validation confirmed that B. cepacia, F. plautii, and Rumminococcus display invasive potential while Pseudomonas protogens did not. CONCLUSION: Using IgG as a marker of pathobionts in larger patient cohorts to identify microbes and elucidate their role in IBD pathogenesis will potentially underpin new strategies to facilitate development of novel, targeted diagnostic, and therapeutic approaches. Interestingly, this method can be used beyond the scope of this manuscript to evaluate altered gut pathobionts in a number of diseases associated with altered microbiota including arthritis, obesity, diabetes mellitus, alcoholic liver disease, cirrhosis, metabolic syndrome, and carcinomas.


Subject(s)
Bacteria/classification , Immunoglobulin G/metabolism , Inflammatory Bowel Diseases/surgery , Metagenomics/methods , Adolescent , Bacteria/immunology , Child , Child, Preschool , Colonoscopy , Female , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Male , Phylogeny
11.
Cancers (Basel) ; 10(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558443

ABSTRACT

Cancer is a multifaceted condition, in which a senescent cell begins dividing in an irregular manner due to various factors such as DNA damage, growth factors and inflammation. Inflammation is not typically discussed as carcinogenic; however, a significant percentage of cancers arise from chronic microbial infections and damage brought on by chronic inflammation. A hallmark cancer-inducing microbe is Helicobacter pylori and its causation of peptic ulcers and potentially gastric cancer. This review discusses the recent developments in understanding microbes in health and disease and their potential role in the progression of cancer. To date, microbes can be linked to almost every cancer, including colon, pancreatic, gastric, and even prostate. We discuss the known mechanisms by which these microbes can induce cancer growth and development and how inflammatory cells may contribute to cancer progression. We also discuss new treatments that target the chronic inflammatory conditions and their associated cancers, and the impact microbes have on treatment success. Finally, we examine common dietary misconceptions in relation to microbes and cancer and how to avoid getting caught up in the misinterpretation and over inflation of the results.

12.
Cell Physiol Biochem ; 41(1): 193-204, 2017.
Article in English | MEDLINE | ID: mdl-28132060

ABSTRACT

BACKGROUND: Nod-like receptor family, pyrin domain containing 3 (NLRP3) is an important cytosolic sensor of cellular stress and infection. Once activated, NLRP3 forms a multiprotein complex (inflammasome) that triggers the maturation and secretion of interleukin (IL)-1ß and IL-18. We aimed to define the consequences of NLRP3 induction, utilizing exogenous adenosine triphosphate (ATP) as an inflammasome activator, to determine if inflammasome activation increases macrophage killing of Citrobacter rodentium and define mechanisms. METHODS: Bacterial survival was measured using a gentamicin protection assay. Inflammasome activation or inhibition in mouse J774A.1 macrophages were assessed by measuring IL-1ß; cytokines and reactive oxygen species (ROS) were measured by ELISA and DCFDA, respectively. RESULTS: Activation of the inflammasome increased bacterial killing by macrophages and its inhibition attenuated this effect with no impact on phagocytosis or cell death. Furthermore, inflammasome activation suppressed pro-inflammatory cytokines during infection, possibly due to more effective bacterial killing. While the infection increased ROS production, this effect was reduced by inflammasome inhibitors, indicating that ROS is inflammasome-dependent. ROS inhibitors increased bacterial survival in the presence of ATP, suggesting that inflammasome-induced bacterial killing is mediated, at least in part, by ROS activity. CONCLUSION: Improving inflammasome activity during infection may increase bacterial clearance by macrophages and reduce subsequent microbe-induced inflammation.


Subject(s)
Adenosine Triphosphate/pharmacology , Citrobacter rodentium/drug effects , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Line , Citrobacter rodentium/pathogenicity , Cytokines/analysis , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Interleukin-1beta/analysis , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Microscopy, Fluorescence , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phagocytosis/drug effects
13.
mBio ; 7(4)2016 07 12.
Article in English | MEDLINE | ID: mdl-27406567

ABSTRACT

UNLABELLED: Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. IMPORTANCE: The role of lipid remodeling in vesiculation is well documented in eukaryotes. Similarly, bacteria produce membrane-derived vesicles; however, the molecular mechanisms underlying their production are yet to be determined. In this work, we investigated the role of outer membrane remodeling in OMV biogenesis in S Typhimurium. We showed that the expression of the lipid A deacylase PagL results in overvesiculation with deacylated lipid A accumulation exclusively in OMV. An S Typhimurium ΔpagL strain showed a significant reduction in intracellular OMV secretion relative to the wild-type strain. Our results suggest a novel mechanism for OMV biogenesis that involves outer membrane remodeling through lipid A modification. Understanding how OMV are produced by bacteria is important to advance our understanding of the host-pathogen interactions.


Subject(s)
Cell Membrane/metabolism , Lipid A/metabolism , Salmonella typhimurium/metabolism , Secretory Vesicles/metabolism , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Membrane/chemistry , Gene Expression , Mass Spectrometry , Secretory Vesicles/chemistry
14.
J Pediatr Gastroenterol Nutr ; 63(6): 644-650, 2016 12.
Article in English | MEDLINE | ID: mdl-26933801

ABSTRACT

OBJECTIVES: Inflammatory bowel diseases (IBD) present commonly in childhood, with unknown etiology, but an important role for the epithelial lining is suggested. Epithelial cell extrusion, measured by counting gaps between epithelial cells, is higher in adult patients with Crohn disease (CD) than in controls. Our objectives were to compare epithelial gaps in the duodenum of IBD and non-IBD pediatric patients, to study the correlation between epithelial gaps, inflammation, and disease activity, and identify potential mechanisms. METHODS: Epithelial gap density of the duodenum was evaluated using probe-based confocal laser endomicroscopy in 26 pediatric patients with IBD (16 CD, 10 ulcerative colitis [UC]) and 17 non-IBD controls during endoscopy. Epithelial gaps were correlated with serum inflammatory markers, disease activity indices, and intraepithelial lymphocytes. A panel of 10 inflammatory cytokines and expression of TNFAIP3 (A20; inhibits NF-κß-induced inflammation) were analyzed in duodenal and ileal biopsies. RESULTS: Confocal imaging showed significantly higher epithelial gap density in patients with IBD, including UC. Interleukin (IL)-2 and IL-8 were higher in duodenal but not ileal biopsies of patients with UC. No significant correlation was present between C-reactive protein, erythrocyte sedimentation rate, disease activity indices, and epithelial gaps in patients with UC. In patients with CD, C-reactive protein positively correlated with epithelial gaps. A20 expression in the duodenum was unchanged among non-IBD and IBD cases. CONCLUSIONS: Duodenal epithelial gaps are increased in pediatric patients with IBD (including UC) but are unrelated to inflammation. This suggests that altered epithelial barrier is an important systemic feature of pediatric IBD and is not only secondary to inflammation.


Subject(s)
Colitis, Ulcerative/pathology , Colon/pathology , Crohn Disease/pathology , Duodenum/pathology , Epithelial Cells/pathology , Gap Junctions/pathology , Ileum/pathology , Adolescent , Case-Control Studies , Child , Epithelium/pathology , Female , Humans , Male , Microscopy, Confocal , Severity of Illness Index
15.
Article in English | MEDLINE | ID: mdl-28111617

ABSTRACT

Multiple sclerosis (MS) is a common cause of non-traumatic neurologic disability with high incidence in many developed countries. Although the etiology of the disease remains elusive, it is thought to entail genetic and environmental causes, and microbial pathogens have also been envisioned as contributors to the phenotype. We conducted a metagenomic survey in cerebrospinal fluid (CSF) from 28 MS patients and 15 patients suffering other type of neurological conditions. We detected bacterial reads in eight out of the 15 non-MS patients and in a single MS patient, at an abundance >1% of total classified reads. Two patients were of special interest: one non-MS patient harbored ~73% bacterial reads, while an MS patient had ~83% bacterial reads. In the former case, Veillonella parvula, a bacterium occasionally found associated with meningitis was the predominant species, whilst Kocuria flava, apparently an environmental bacterium, predominated in the latter case. Thirty-four out of 43 samples contained <1% bacterial reads, which we regard as cross- or environmental contamination. A few viral reads corresponding to Epstein-Barr virus, cytomegalovirus, and parvovirus were also identified. Our results suggest that CSF of MS patients is often (but not always) free of microbial DNA.


Subject(s)
Cerebrospinal Fluid/chemistry , DNA, Bacterial/analysis , Multiple Sclerosis/pathology , DNA, Viral/analysis , Female , Humans , Male , Metagenomics
16.
PLoS One ; 8(12): e80656, 2013.
Article in English | MEDLINE | ID: mdl-24312491

ABSTRACT

Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1ß. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1ß to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3(-/-) and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1ß (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3(-/-) mice developed severe colitis; IL-1ß treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3(-/-) mice. In contrast, IL-1ß treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3(-/-) mice, and increased severity of disease in WT mice with IL-1ß treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3(-/-) compared to WT mice. IL-1ß treatments elevated macrophage infiltration into infected crypts in Nlrp3(-/-) mice, suggesting that IL-1ß may improve macrophage function, as exogenous administration of IL-1ß increased phagocytosis of C. rodentium by peritoneal Nlrp3(-/-) macrophages in vitro. As well, the exogenous administration of IL-1ß to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3(-/-) mice with IL-1ß seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1ß appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1ß improved bacterial clearance in Nlrp3(-/-) mice but increased tissue damage when given to WT mice.


Subject(s)
Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Immunity, Innate , Interleukin-1beta/immunology , Macrophages/immunology , Animals , Carrier Proteins/genetics , Carrier Proteins/immunology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/pathology , Female , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-1beta/genetics , Macrophages/pathology , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...